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Abstract. Let f be a martingale on an arbitrary atomic probability space equipped
with a tree-like structure and let S(f, q) denote the associated q-function. The paper
is devoted to weighted Lp-estimates

c−1
p,q,w‖S(f, q)‖Lp(w) ≤ ‖f‖Lp(w) ≤ Cp,q,w‖S(f, q)‖Lp(w), 1 ≤ p <∞,

for Muckenhoupt weights. Using the combination of the theory of sparse operators,
extrapolation and Bellman function method, we identify the optimal dependence of
the constants cp,q,w and Cp,q,w on the Ap characteristics of the weights involved.

1. Introduction

The purpose of this paper is to study weighted estimates for q-functions, which arise
naturally in the abstract probabilistic and analytic context. Let us start with the nec-
essary background and notation. Let d be a �xed dimension and let D(Rd) denote the
standard dyadic lattice in Rd. This lattice gives rise to the natural dyadic �ltration
(Fn)n∈Z, where for each n, the σ-algebra Fn is generated by all cubes Q ∈ D(Rd) sat-
isfying |Q| = 2−nd. Let (En)n∈Z be the associated sequence of conditional expectations.
Given an integrable function f on Rd, we denote by (fn)n∈Z the corresponding (Fn)n∈Z-
martingale, i.e., we set fn = En(f) for all n ∈ Z. The associated di�erence sequence
(dfn)n∈Z is de�ned by dfn = fn − fn−1, n ∈ Z. Sometimes, to indicate the cube we are
restricting to, we will use the notation 〈f〉Q = 1

|Q|
∫
Q
fdx for the average of f over Q and

denote by ∆Qf = 〈f〉Q − 〈f〉Q′ the di�erence of f with respect to Q; here Q′ stands for
the direct dyadic parent of Q. So, for each n ∈ Z we have the identities

fn =
∑
Q

〈f〉QχQ and dfn =
∑
Q

∆QfχQ,

where the summation is taken over all Q ∈ D(Rd) of measure 2−nd.
In the paper, we will be interested in the boundedness properties of the q-function of

f , where q ∈ (1,∞) is a �xed parameter. This object is de�ned by

S(f, q) =

(∑
n∈Z
|dfn|q

)1/q

=

 ∑
Q∈D(Rd)

|∆Qf |qχQ

1/q

,

it can also be easily formulated in the general probabilistic context (see below). Note that
in the special case q = 2, we obtain the classical dyadic square function associated with f .
The inequalities between f and S(f, q) have played an important role in probability and
analysis. Of course, the case q = 2 is prominent here and is foundational to the whole
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harmonic and stochastic analysis, but the case of other q has also been investigated in
the literature, as we brie�y discuss now. The Lp inequalities

(1.1) c−1p ‖S(f, p)‖Lp ≤ ‖f‖Lp ≤ Cp‖S(f, p)‖Lp , 1 < p <∞,
with the particular emphasis put on the description of the optimal values of cp and Cp,
have been studied by many authors: see e.g. the works of Alsmeyer and Rösler [1], von
Bahr and Esseen [2], Cox [7], Pinelis [27] and Pisier [30]. Such estimates have found
applications in probability and statistics, e.g. they can be applied in the concentration of
measure of separate Lipschitz functions on product spaces. They can also be used in the
study of various geometric properties of Lp spaces (e.g., p-smoothness, see also below).

The estimate (1.1) can be improved. Another instance, in which the q-function appears,
is one of the equivalent formulations of the Rosenthal inequality for martingales: for p ≥ 2
and any q ∈ (p,∞),

‖f‖Lp �p

∥∥∥∥∥∥
(∑
n∈Z
En−1(df2n)

)1/2
∥∥∥∥∥∥
Lp

+ ‖S(f, q)‖Lp ,

where the symbol A �p B means the existence of a constant 1 ≤ cp <∞ depending only
on p such that c−1p B ≤ A ≤ cpB. See [15, 19, 31] for details. Consult also the recent
works [28, 29] by Pinelis which contain extensions to vector-valued context: the above
de�nition of a q-function makes perfect sense for Banach-space valued martingales, one
only needs to interpret | · | as the appropriate norm.

Finally, we would like to mention that the inequalities between S(f, q) and f arise
naturally in the context of superre�exivity. To recall the relevant de�nitions, suppose
that X and Y are Banach spaces. We say that X is �nitely representable in Y if for all
�nite-dimensional subspaces E of X and all λ > 1, there is a linear map T : E → Y such
that λ−1‖x‖X ≤ ‖Tx‖Y ≤ λ‖x‖X for all x ∈ E. A Banach space X is superre�exive if
it is re�exive and every Banach space that is �nitely representable in X is also re�exive.
This notion was introduced in 1972 by James, see the papers [17, 18] for some basic prop-
erties of superre�exive spaces. Pisier [30] extended James' work and found an equivalent
formulation for superre�exivity: the Banach space X is superre�exive, if and only if there
are p ∈ (1,∞) and q ∈ [2,∞) such that for all X-valued dyadic martingales f ,

‖S(f, q)‖Lp ≤ cp,q‖f‖Lp ,

where cp,q is a �nite constant depending only on the parameters indicated.
In this paper, we will be interested in the weighted context. Here and below, the word

`weight' will refer to a positive, locally integrable function, which will usually be denoted
by w or v. Any weight w on Rd gives rise to the corresponding measure wdx and we
will often use the notation w(A) =

∫
A
wdx for any Borel subset A of Rd. The associated

weighted Lp spaces, 0 < p <∞, are given by

Lp(w) =

{
f : Rd → R : ‖f‖Lp(w) :=

(∫
Rd

|f |pwdx
)1/p

<∞
}
.

There is an interesting problem to investigate the extensions of (1.1), in which S(f, p) is
replaced by the general q-function S(f, q) and the space Lp is replaced by its weighted
counterpart. This problem has been studied quite intensively in the special case q = 2 (see
[3, 4, 11, 16, 22]). It is not di�cult to see that such estimates cannot hold for arbitrary
weights and some structural assumption needs to be imposed. Given 1 < p < ∞, a
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weight w is said to satisfy Muckenhoupt's condition Ap (or to belong to the class Ap), if
the characteristic

[w]Ap
:= sup

Q∈D(Rd)

(
1

|Q|

∫
Q

wdx

)(
1

|Q|

∫
Q

w1/(1−p)dx

)p−1
is �nite. There are also appropriate versions of this condition in the boundary case
p ∈ {1,∞}; we will only recall the case p = 1, as the in�nite case is irrelevant for our
considerations below. We say that w belongs to the (dyadic) class A1, if

[w]A1
= sup
Q∈D(Rd)

〈w〉Q
essinfQ w

is �nite. Then for any 1 < p < ∞ and any w ∈ Ap, there are �nite constants cp,w, Cp,w
depending only on the parameters indicated such that

c−1p,w‖S(f, 2)‖Lp(w) ≤ ‖f‖Lp(w) ≤ Cp,w‖S(f, 2)‖Lp(w).

This result can be further sharpened in the following direction: one can ask about the
extraction of the optimal dependence of cp,w and Cp,w on the characteristic [w]Ap

. Specif-
ically, the problem is to determine, for any �xed p, the smallest exponents kp, Kp such

that cp,w ≤ cp[w]
kp
Ap

and Cp,w ≤ Cp[w]
Kp

Ap
, where this time cp and Cp depend only on p. It

turns out that the answer is kp = max{1/2, 1/(p− 1)} and Kp = 1 (if the �ltration/tree
is regular, then Kp can be decreased): see [3, 4, 11, 16, 22].

Our contribution is the study of analogous questions for an arbitrary q. Our result in
the dyadic context can be formulated as follows.

Theorem 1.1. Let f, w be a function and a weight on Rd.
(i) Suppose that q ≥ 2. Then for any 1 < p <∞ we have

(1.2) ‖S(f, q)‖Lp(w) ≤ Cp,q[w]
max{ 1

q ,
1

p−1}
Ap

‖f‖Lp(w).

Here Cp,q depends only on the parameters indicated and the exponent max{ 1q ,
1
p−1} is the

best possible.
(ii) Suppose that 1 < q ≤ 2. Then for any 1 ≤ p <∞ we have

(1.3) ‖f‖Lp(w) ≤ Cp,q[w]Ap
‖S(f, q)‖Lp(w).

Here Cp,q depends only on the parameters indicated and the linear dependence on [w]Ap

is the best possible.

We would like to emphasize here that the above estimates are dimension-free: the
constants involved in (1.2) and (1.3) do not depend on d. As we have already mentioned
above, if we allowed the dependence on the dimension, then the linear factor [w]Ap in
(1.3) could be improved (see [11] for the case q = 2).

Actually, the regular dyadic structure is not necessary for the validity of the above
result. We will study the above statement in a much more general context of arbitrary
probability spaces equipped with tree-like structures. Here is the precise de�nition.

De�nition 1.2. Suppose that (X,F , µ) is a nonatomic probability space. A set T of
measurable subsets of X will be called a tree, if the following conditions are satis�ed:

(i) X ∈ T and for every Q ∈ T we have µ(Q) > 0.
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(ii) For everyQ ∈ T there is a �nite subset C(Q) ⊂ T containing at least two elements
such that

(a) the elements of C(Q) are pairwise disjoint subsets of Q,
(b) Q =

⋃
C(Q).

(iii) T =
⋃
m≥0 T m, where T 0 = {X} and Tm+1 =

⋃
Q∈Tm C(Q).

(iv) We have limm→∞ supQ∈Tm µ(Q) = 0.

All the de�nitions formulated in the dyadic context can easily be extended to the above
probabilistic setting, as we brie�y discuss now. Let (X,F , µ) be a probability space with
a tree T . Then the notions of martingales, di�erences, q-functions, averages and weights
make perfect sense, it su�ces to simply replace Rd with X, the Lebesgue measure dx
with µ and the dyadic lattice D(Rd) with T . The only essential di�erence is that now
the �ltration becomes a one-sided sequence: we take Fn = σ(Tn) for each n = 0, 1, 2, . . ..
This forces us to modify the de�nition of the di�erence sequence, in which we set df0 = f0
and ∆Xf = 〈f〉X .

We will prove the following analogue of Theorem 1.1.

Theorem 1.3. Let (X,F , µ) be a probability space with a tree T . Assume further that
f, w are a random variable and a weight on X.

(i) Suppose that q ≥ 2. Then for any 1 < p <∞ we have

(1.4) ‖S(f, q)‖Lp(w) ≤ Cp,q[w]
max{ 1

q ,
1

p−1}
Ap

‖f‖Lp(w).

Here Cp,q is a �nite constant depending on p and q only, and the exponent max{ 1q ,
1
p−1}

is the best possible.
(ii) Suppose that 1 < q ≤ 2. Then for any 1 ≤ p <∞ we have

(1.5) ‖f‖Lp(w) ≤ Cp,q[w]Ap‖S(f, q)‖Lp(w).

Here Cp,q depends only on the parameters indicated and the linear dependence on [w]Ap

is the best possible.

In analogy to the dyadic setting discussed previously, we would like to emphasize that
in the above statement we do not require the tree to satisfy any regularity properties.
To see that the above probabilistic context does generalize the dyadic setting, observe
�rst that the unit cube [0, 1]d with its Borel subsets and the Lebesgue measure forms a
probability space, and the dyadic subsets of [0, 1]d form a tree. Now, the use of standard
dilation and limiting arguments allow to deduce the validity of Theorem 1.1 from its
probabilistic counterpart.

A few words about the organization of the paper and the proof are in order. In our
considerations below, we exploit a variety of methods. The proof of the case q ≥ 2, pre-
sented in Section 2, is a little simpler: the inequality (1.4) is deduced from extrapolation
and the theory of sparse operators (which have become an independent research area in
the recent literature: see e.g. [10, 20, 23, 24] and consult the references therein). The
sharpness of the exponent is obtained via the combination of extrapolation again and the
construction of appropriate examples. The analysis of the case 1 < q ≤ 2, contained in
Section 3, is a little more involved. First, one can try to apply duality arguments to (1.4),
but one obtains the suboptimal version of (1.5):

‖f‖Lp(w) ≤ Cp,q[w]
max{1,1/(q′(p−1))}
Ap

‖S(f, q)‖Lp(w),
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in which the linear dependence appears only for p ≥ 2−q−1 (here and below, q′ = q/(q−1)
is the dual exponent to q). The use of sparse operators does not seem to lead to the sharp
inequality either. To overcome this di�culty, we will use a completely di�erent approach
and exploit the Bellman function technique. This method is a well-known tool, used
widely in probability theory and harmonic analysis (cf. [5, 25, 26, 32, 33], consult also
the references therein), which often leads to sharp or at least tight estimates. Roughly
speaking, the argument allows to deduce a given estimate from the existence of a certain
function enjoying appropriate size and majorization conditions. This method gives us a
Fe�erman-Stein-type L1 estimate for general weights which is of independent interest and
connections. Combined with extrapolation, it gives us a uni�ed proof of (1.5) in the full
range 1 ≤ p <∞. The sharpness follows from the construction of examples.

2. The case q ≥ 2

2.1. Proof of (1.4). As we have mentioned above, the argument will rest on the theory
of sparse operators. Let us recall the relevant notions.

De�nition 2.1. Suppose that (X,F , µ) is a probability space equipped with a tree struc-
ture T . A collection J ⊂ T is called sparse, if for any Q ∈ J there exists a measurable
subset E(Q) ⊂ Q with µ(E(Q)) ≥ µ(Q)/2 and such that E(Q)∩E(Q′) = ∅ unless Q = Q′.

The key ingredient of the proof of the Lp bound is the pointwise domination of q-
functions by sparse operators. We will prove the following statement.

Theorem 2.2. Let q ≥ 2. There is a constant C > 0 such that for every integrable and
nonnegative function f on X, there exists a sparse family J = Jf such that

|S(f, q)|q ≤ C
∑
Q∈J
〈f〉qχQ.

Proof. The argument is rather standard and rests on an appropriate recursive procedure.
Let M be the martingale maximal function, acting on integrable functions ϕ on X by
Mϕ = supQ〈|ϕ|〉QχQ. It is well-known that both M and S(·, q) are bounded as operators

from L1 to L1,∞, so there exists a constant C0 such that the set

H = H(X) :=

{
x ∈ X : max{Mf,S(f, q)} > 1

2
C

1
q

0 〈f〉X
}

satis�es µ(H) ≤ 1
2µ(X). Let E be the family of maximal elements in T contained in H

(i.e., Q ∈ E if and only if Q ∈ T , Q ⊂ H and Q′ 6⊂ H, where Q′ is the parent of Q in T ).
We claim that

(2.1) |S(f, q)(x)|q ≤ C0〈f〉qX +
∑
R∈E
|SR(f, q)(x)|q , x ∈ X,

where SR(f, q) =
(
〈f〉qRχR +

∑
Q⊂R |∆Qf |q

) 1
q

is the version of the q-function restricted

to the set R. Indeed, for x ∈ X \ H the above inequality reads

|S(f, q)(x)|q ≤ C0〈f〉qX ,
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which is true from the very de�nition of H. If x ∈ H, then by the maximality of elements
of E , there exists a unique R ∈ E containing x. We have

|S(f, q)(x)|q =
∑

Q:R′(Q
|∆Qf |q (x) + |〈f〉R − 〈f〉R′ |q +

∑
Q:Q⊂R

|∆Qf |q (x)

≤
∑

Q:R′(Q
|∆Qf |q (x) + 〈f〉qR′ + 〈f〉qR +

∑
Q:Q⊂R

|∆Qf |q (x),

where, as above, R′ stands for the direct parent of R in T . Here the estimate is due to
the assumption f ≥ 0. Again, by the maximality of elements of E , each of the �rst two
elements of the sum is bounded by 1

2C0〈f〉qX . The last two elements sum up to |SR(f, q)|q.
We put X into the desired sparse family J and repeat recursively the above reasoning.
Namely, we use the argumentation with S(f, q) replaced with SR(f, q) and X replaced
with R, for any R ∈ E obtained above. Having done this, we obtain

|S(f, q)|q ≤ C0〈f〉qX + C0

∑
R∈E
〈f〉qR +

∑
R̃∈E′

|SR̃(f, q)|q,

where E ′ is the collection of all maximal cubes contained in H(R), R ∈ E . We continue

this procedure with S(f, q) replaced with SR̃(f, q) for all R̃ ∈ E ′, and so on. The fact
that µ(H(R)) ≤ µ(R)/2 guarantees that the procedure yields a convergent series on the
right. This ends the proof. �

Therefore, the q-function associated with nonnegative f is controlled by the sparse

operator Tq,J f =
(∑

Q∈J 〈f〉qχQ
)1/q

, and the case of general f is handled by a standard

decomposition into the positive and the negative parts: if f = f+ − f−, then S(f, q) ≤
21−1/q(S(f+, q) + S(f−, q)) and ‖f±‖Lp(w) ≤ ‖f‖Lp(w). Thus, to show (1.4), it is enough
to establish the corresponding weighted bound for sparse operators. Such estimates are
well-known in the literature: see e.g. [23] or [11] in the dyadic context. In the general
probabilistic setting the reasoning is similar: for the sake of convenience and completeness,
we provide the details. Our starting point is the following extrapolation theorem (see
Duoandikoetxea [13]).

Theorem 2.3. Suppose that f , g are two given functions on X. Assume further that for
some 1 ≤ p0 <∞, there exists α(p0) > 0 and a �nite constant C such that

‖g‖Lp0 (w) ≤ C[w]
α(p0)
Ap0

‖f‖Lp0 (w)

for all weights w ∈ Ap0 . Then for every 1 < p <∞ and w ∈ Ap, we have

‖g‖Lp(w) ≤ C
′[w]

α(p0)max{1, p0−1
p−1 }

Ap
‖f‖Lp(w) ,

where the constant C ′ depends only on C, p0 and p.

The next step is to establish the weighted bound for the sparse operators for a particular
exponent.

Lemma 2.4. Let q ≥ 2. Then for any nonnegative f and any w ∈ Aq+1,

‖Tq,J f‖Lq+1(w) ≤ c[w]
1
q

Aq+1
‖f‖Lq+1(w) .
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Proof. Fix a positive h ∈ Lq+1(w) of norm 1 and an arbitrary weight w ∈ Aq+1. Let

v = w−
1
q be the dual weight to w. In what follows, we will also use the notation 〈f〉w,Q =

1
w(Q)

∫
Q
fwdx for the average of f over Q with respect to the measure wdx. By the

de�nition of Aq+1 class, Hölder's inequality and the properties of sparse family, we have∫
X

(Tq,J f)qhwdµ =
∑
Q∈J
〈f〉qQ

∫
Q

hwdµ

=
∑
Q∈J

w(Q)v(Q)q

µ(Q)q+1
µ(Q)〈fv−1〉qv,Q〈h〉w,Q

≤ 2[w]Aq+1

∑
Q∈J

µ(E(Q))

(
1

v(Q)

∫
Q

fw
1
q vdµ

)q
〈h〉w,Q

≤ 2[w]Aq+1

∑
Q∈J

∫
E(Q)

(
Mv

(
fw

1
q

))q
Mw(h)w

1
q+1w−

1
q+1 dµ

≤ 2[w]Aq+1

(∫
X

(
Mv

(
fw

1
q

))q+1

vdµ

) q
q+1
(∫

X

(Mw(h))
q+1

wdµ

) 1
q+1

= 2[w]Aq+1

∥∥∥Mv

(
fw

1
q

)∥∥∥q
Lq+1(v)

‖Mw(h)‖Lq+1(w)

≤ 2

(
q + 1

q

)q+1

[w]Aq+1

∥∥∥fw 1
q

∥∥∥q
Lq+1(v)

‖h‖Lq+1(w)

= 2

(
q + 1

q

)q+1

[w]Aq+1 ‖f‖
q
Lq+1(w) .

The last inequality follows from the strong-type inequality for maximal operator. Taking
supremum over all h as above, we obtain

‖Tq,J f‖qLq+1(w) ≤ 2

(
q + 1

q

)q+1

[w]Aq+1
‖f‖qLq+1(w) ,

and the claim follows. �

We are ready for the proof of the weighted inequality.

Proof of (1.4). It follows directly from the sparse domination (Theorem 2.2), extrapola-

tion and Lemma 2.4, because of the identity 1
q max{1, (q+1)−1

p−1 } = max{ 1q ,
1
p−1}. �

2.2. Sharpness. Now we will prove that the exponent max{ 1q ,
1
p−1} appearing in (1.2)

and (1.4) cannot be improved. The cases p ≤ q + 1 and p > q + 1 are dealt with by
di�erent methods.

Sharpness for 1 < p ≤ q+ 1. Let c > 1 be a �xed parameter. Consider the probability
space equal to the unit interval (0, 1] equipped with its Borel subsets and Lebesgue's
measure. As the tree T we take the standard one-dimensional dyadic lattice. Introduce
the function f : (0, 1]→ (0,∞) by

f =

∞∑
n=0

(
2− 1

c

)n
χ(2−n−1,2−n].
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Note that

∆(2−n−1,2−n]f = 〈f〉(2−n−1,2−n] − 〈f〉(0,2−n]

=

(
2− 1

c

)n
− 2n

∞∑
k=n

(
2− 1

c

)k
· 2−k−1 =

(
2− 1

c

)n
(1− c),

so S(f, q) ≥ (c− 1)f almost everywhere. Our next observation is that f is an A1 weight
satisfying [f ]A1 ≤ c: for any x ∈ (0, 1] and any dyadic cube Q ⊆ [0, 1) containing x
we have 〈f〉Q ≤ cf(x). Indeed, for any such x and Q, we have two possibilities. If Q

is of the form (0, 2−n] for some n, then 〈f〉Q =
(
2− 1

c

)n · c, as we computed above;

on the other hand, we have x ≤ 2−n, so f(x) ≥
(
2− 1

c

)n ≥ c−1〈f〉Q. The second

possibility is that Q is contained in some interval of the form (2−n−1, 2−n] (such an
interval is determined uniquely). But in such a case, the function f is constant on Q, so
〈f〉Q = f(x). The A1 condition follows. Therefore, w := f1−p is an Ap weight: we have

[w]Ap
= [f ]p−1Ap′

≤ [f ]p−1A1
≤ cp−1. Putting all the above facts together, we see that for any

exponent κ,

(2.2)
‖S(f, q)‖Lp(w)

[w]κAp
‖f‖Lp(w)

≥ c− 1

cκ(p−1)
.

Now, if we had κ < 1/(p − 1), then the right-hand side would converge to in�nity as
c → ∞. Therefore, the optimal exponent in the weighted estimate must be at least
1/(p− 1), which is exactly what we need in (1.4). Concerning the sharpness of (1.2), we
extend the above f and w to the whole real line by setting f ≡ 0 and w ≡ 〈w〉(0,1] outside
(0, 1]. Then w is still an Ap weight and the characteristic does not change: indeed, if Q
is an arbitrary dyadic cube not contained in (0, 1], then either Q ∩ (0, 1] = ∅ and then w

is constant on Q (so 〈w〉Q〈w1/(1−p)〉p−1Q = 1), or (0, 1] ⊂ Q and then

〈w〉Q〈w1/(1−p)〉p−1Q = 〈w〉(0,1]
(

1

|Q|
〈w1/(1−p)〉(0,1] +

|Q| − 1

|Q|
〈w〉1/(1−p)(0,1]

)p−1
≤ 〈w〉(0,1]〈w1/(1−p)〉p−1(0,1].

It remains to note that (2.2) is still valid and the sharpness follows.

Sharpness for p ∈ (q + 1,∞). We will present an adaptation of an argument which
can be found in [6] and [21], and whose idea can be tracked back to the paper [14] by
Fe�erman and Pipher. Let p0 ∈ (q+1,∞) be a �xed parameter. Assume that there exists
a nondecreasing function φ : [1,∞)→ (0,∞) with φ(t)/t1/q → 0 as t→∞, such that

(2.3) ‖S(f, q)‖Lp0 (w) ≤ Cφ([w]Ap0
) ‖f‖Lp0 (w) .

Then for all p > p0, we have the unweighted estimate

(2.4) ‖S(f, q)‖Lp(X) ≤ 21/p0Cφ(p) ‖f‖Lp(X) ,

which, as we show later, cannot hold. To prove that (2.3) implies (2.4), we use the
standard procedure, known as the Rubio de Francia algorithm (a convenient reference is

the monograph [8]). Fix p > p0, a non-negative function h ∈ L(p/p0)
′
(X) of norm 1 and

de�ne

Rh =

∞∑
k=0

Mkh(
2 ‖M‖L(p/p0)′→L(p/p0)′

)k .
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Then it is straightforward to check that h(x) ≤ Rh(x) almost everywhere, ‖Rh‖L(p/p0)′ (X) ≤
2 ‖h‖L(p/p0)′ (X) = 2 and [Rh]Ap0

≤ [Rh]A1 ≤ 2 ‖M‖L(p/p0)′→L(p/p0)′ ≤ p. Thus, by (2.3)

and Hölder's inequality,∫
X

(S(f, q)f)
p0 hdµ ≤

∫
X

(S(f, q))
p0 Rhdµ

≤ Cp0φ([Rh]Ap0
)p0
∫
X

|f |p0Rhdµ

≤ Cp0φ(p)p0 ‖f‖p0Lp(X) ‖Rh‖L(p/p0)′ (X) ≤ 2Cp0φ(p)p0 ‖f‖p0Lp(X) .

Taking the supremum over all h as above, we obtain (2.4). Now we construct an ex-
plicit example which contradicts the latter estimate. Consider the probability space
((0, 1],B(0, 1), | · |) with its dyadic tree, and distinguish the random variable

f(x) =

∞∑
j=0

χ(2−2j−1,2−2j ](x).

Then ‖f‖Lp(X) ≤ ‖f‖L∞(X) = 1. Setting Qn = (0, 2−n], we easily compute that

〈f〉Q2n
=

1

|Q2n|

∞∑
j=n

(2−2j − 2−2j−1) =
2

3

and

〈f〉Q2n−1
=

1

|Q2n−1|

∞∑
j=n

(2−2j − 2−2j−1) =
1

3
.

Consequently, for 2−2n−1 < x ≤ 2−2n, we have

(S(f, q)(x))q ≥
n∑
j=1

(〈f〉Q2j − 〈f〉Q2j−1)q =
n

3q
& ln

(
1

x

)
,

with a similar estimate for 2−2n < x ≤ 2−2n+1. Here and below, the symbol `&' refers to
an inequality which holds up to a multiplicative constant depending only on q. Therefore,
we obtain

‖S(f, q)‖Lp(X) &

(∫ 1

0

(
ln

(
1

x

)) p
q

) 1
p

=

( ∞∑
k=0

∫ 2−k

2−k−1

(
ln

(
1

x

)) p
q

) 1
p

≥

( ∞∑
k=0

(
ln

(
1

2−k

)) p
q (

2−k − 2−k−1
)) 1

p

&

( ∞∑
k=0

k
p
q 2−k

) 1
p

& p
1
q ,

where the last inequality follows by taking just one summand corresponding to k = dpe.
This contradicts (2.4) and �nishes the proof in the probabilistic setup. Concerning (1.2),
the same reasoning works: in the above extrapolation argument, we replace X with R
throughout. When proving the sharpness in the reduced unweighted context, we extend
the extremal function f by setting f ≡ 0 outside (0, 1].
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3. The case q < 2

3.1. Proof of (1.5). Here the reasoning will exploit the properties of a certain special
function of four variables, enjoying appropriate size and concavity requirements. Let
β = (1 +

√
2)(
√

2 + 5 + 4
√

2 ln 2) and consider the domain

D = [0,∞)× R× [0,∞)× (0,∞).

Introduce the function B : D → R by the formula

B(x, y, u, v) = (x2 + y2)
1
2u− βxv + 4xv ln (uv−1 + 1).

Lemma 3.1. The function B enjoys the following properties.

(i) For any y ∈ R and u > 0,

(3.1) B(|y|, y, u, u) ≤ 0.

(ii) For any (x, y, u, v) ∈ D we have

(3.2) B(x, y, u, v) ≥ |y|u− βxv.

Proof. The property (i) is straightforward: we haveB(|y|, y, u, u) = (21/2−β+4 ln 2)|y|u ≤
0. The second majorization is also evident and follows immediately from the estimates
(x2 + y2)1/2u ≥ |y|u and 4xv ln (uv−1 + 1) ≥ 0. �

The key property of B, which can be regarded as a certain type of concavity condition,
is studied in a statement below.

Lemma 3.2. For any (x, y, u, v) ∈ D and h, d ∈ R such that u ≤ v and u + d ≥ 0, we
have

B
(

(x2 + h2)
1
2 , y + h, u+ d, (u+ d) ∨ v

)
≤ B(x, y, u, v) +By(x, y, u, v)h+Bu(x, y, u, v)d.

(3.3)

Proof. We start the proof with a simple observation which will be useful later on. For

φ(s) =
(
x2 + s2 + (y + s)2

) 1
2 , we have

φ′(s) =
y + 2s√

x2 + s2 + (y + s)2
≤ |y + 2s|√

1
2 (y + 2s)2

=
√

2.

Consequently, by the mean-value theorem,

(3.4)
∣∣∣(x2 + h2 + (y + h)2

) 1
2 −

(
x2 + y2

) 1
2

∣∣∣ = |φ(h)− φ(0)| ≤
√

2|h|.

Now, we split the reasoning into three separate parts.
Case I: u+ d ≤ v, x ≤ |h|. The desired inequality reads

(x2 + h2 + (y + h)2)
1
2 (u+ d)− β(x2 + h2)

1
2 v + 4(x2 + h2)

1
2 v ln ((u+ d)v−1 + 1)

≤ (x2 + y2)
1
2u− βxv + 4xv ln (uv−1 + 1) +

yuh

(x2 + y2)
1
2

+ (x2 + y2)
1
2 d+

4xd

uv−1 + 1
.
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This can be rewritten in the equivalent form I1 + I2 + I3 + I4 ≤ 0, where

I1 = (x2 + h2 + (y + h)2)1/2(u+ d)− (x2 + y2)1/2(u+ d),

I2 = −β(x2 + h2)
1
2 v + βxv,

I3 = 4(x2 + h2)
1
2 v ln ((u+ d)v−1 + 1),

I4 = −4xv ln (uv−1 + 1)− yuh

(x2 + y2)1/2
− 4xd

uv−1 + 1
.

The �rst term is not bigger than
√

2|h|v, by (3.4) and the assumption u + d ≤ v. Next,
we have the estimates

I2 = − βh2v√
x2 + h2 + x

≤ − β|h|v√
2 + 1

,

and I3 ≤ 4
√

2 ln 2|h|v, by the assumption x ≤ |h|. Finally, to handle I4, we use the
obvious bounds −4xv ln (uv−1 + 1) ≤ 0,

− yuh

(x2 + y2)1/2
≤ |h|u ≤ |h|v and − 4xd

uv−1 + 1
≤ 4xu

uv−1 + 1
≤ 4xu ≤ 4|h|v

to obtain that I4 ≤ 5|h|v. Putting all these observations together, we get

I1 + I2 + I3 + I4 ≤ |h|v
(√

2− β√
2 + 1

+ 4
√

2 ln 2 + 5

)
= 0

and the claim follows.

Case II: u + d ≤ v, x ≥ |h|. Here the reasoning rests on the combination of two
intermediate estimates. We start with the following inequality

(3.5) B
(

(x2 + h2)
1
2 , y + h, u+ d, v

)
+
vh2

x
≤ B(x, y + h, u+ d, v).

To prove this, consider the auxiliary function F (s) = B
(

(x2 + s2)
1
2 , y, u, v

)
+ vs2

x . It is

enough to show that F (s) is decreasing on [0, h] if h > 0, and increasing on [h, 0] if h < 0
(indeed, then (3.5) follows, up to the substitution y := y + h and u := u + d). If h is
positive, then

F ′(s) =
s√

x2 + s2

(
−βv + 4v ln (uv−1 + 1) +

u
√
x2 + s2√

x2 + s2 + y2

)
+

2vs

x

≤ vs√
x2 + s2

(−β + 4 ln 2 + 1) +
2vs

x
< − 2

√
2vs√

x2 + s2
+

2vs

x
< 0,

by the assumption s ≤ |h| ≤ x. The same calculation shows the monotonicity of F
for h < 0 (then s ∈ [h, 0] is also negative, so the above inequalities reverse). Having
established (3.5), we move to the second step and consider the continuous function G =
Gx,y,u,v,h,d : [0, 1] → R given by G(t) = B(x, y + th, u + td, v). We will prove that

G′′(t) ≤ 2vh2

x for t ∈ (0, 1), and this will yield the claim. Indeed, if we manage to bound
the second derivative, then by the mean-value theorem we will obtain

B(x, y + h, u+ d, v) = G(1) ≤ G(0) +G′(0) +
vh2

x
.

Combining this with (3.5), we will get the desired inequality (3.3).
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So, we turn our attention to the estimate for G′′(t). Simple calculations yield

G′′(t) = Byy(x, y + th, u+ td, v)h2 + 2Byu(x, y + th, u+ td, v)hd

+Buu(x, y + th, u+ td, v)d2

=
(u+ td)x2h2

(x2 + (y + th)2)
3
2

+
2(y + th)hd

(x2 + (y + th)2)
1
2

− 4xd2

v(1 + (u+ td)v−1)2

≤ vh2

x
+ 2|h||d| − xd2

v
≤ 2vh2

x
.

This completes the proof in the case u+ d ≤ v.
Case III: u+ d > v. The assertion reads

(x2 + h2 + (y + h)2)
1
2 (u+ d)− β(x2 + h2)

1
2 (u+ d) + 4(x2 + h2)

1
2 (u+ d) ln 2

≤ (x2 + y2)
1
2u− βxv + 4xv ln (uv−1 + 1) +

yuh

(x2 + y2)
1
2

+ (x2 + y2)
1
2 d+

4xd

uv−1 + 1
.

If we put all the terms on the left-hand side, we immediately observe that the obtained
expression depends linearly on d. Denoting this expression by L(d), we see that it is
enough to show that L′(d) ≤ 0: then the claim will follow from the previous two cases.
The estimate L′(d) ≤ 0 is equivalent to

(x2 + h2 + (y + h)2)
1
2 − (x2 + y2)

1
2 − β(x2 + h2)

1
2 + 4(x2 + h2)

1
2 ln 2− 4x

uv−1 + 1
≤ 0.

However, by (3.4), the left-hand side is bounded from above by
√

2|h| − (x2 + h2)
1
2 (β − 4 ln 2) ≤ |h|(

√
2− β + 4 ln 2) ≤ 0,

which completes the proof of the lemma. �

The above special function B leads to the following result, which is of independent
interest. We would like to emphasize here that the weight w below is not assumed to
belong to any Muckenhoupt class.

Theorem 3.3. Let w be an arbitrary weight on X (i.e., a nonnegative, integrable random
variable) and let f ∈ L1(w). Then we have

(3.6) ‖f‖L1(w) ≤ β ‖S(f, 2)‖L1(Mw)

Proof. We may assume that ‖S(f, 2)‖L1(Mw) < ∞, since otherwise there is nothing to

prove. Also, we may assume that w is strictly positive, by considering the modi�ed
weight w + ε and letting ε → 0 at the end. Consider the four dimensional process
Hn = (Sn(f, 2), fn, wn,Mnw) , n = 0, 1, 2, . . ., where

Sn(f, 2) =

(
n∑
k=0

|dfk|2
)1/2

and Mnw = max
0≤k≤n

wk

are the truncated versions of the square function of f and the (martingale) maximal
function of w. Then the sequence (B (Hn))n≥0 is a supermartingale. To see this, we
apply Lemma 3.2 to obtain the pointwise estimate

B(Hn+1) = B
(

((Sn(f, 2))2 + df2n+1)
1
2 , fn + dfn+1, wn + dwn+1, (wn + dwn+1) ∨Mnw

)
≤ B(Hn) +By(Hn)dfn+1 +Bu(Hn)dwn+1.
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Both sides are integrable, since the �ltration is atomic and hence all the variables fn,
fn+1, Hn, Hn+1, etc. take values in a �nite set. Therefore we may apply the condi-
tional expectation with respect to Fn and, as the result, we obtain EnB(Hn+1) ≤ B(Hn).
Indeed, this follows from the fact that B(Hn), By(Hn), Bu(Hn) are Fn-measurable and
En(dfn+1) = En(dwn+1) = 0. The supermartingale property together with the majoriza-
tion conditions (3.1) and (3.2) imply∫

X

|fn|wndµ− β
∫
X

Sn(f, 2)Mnwdµ ≤
∫
X

B(Hn)dµ

≤
∫
X

B(H0)dµ =

∫
X

B(|f0|, f0, w0, w0)dµ ≤ 0.

Therefore, we get
∫
X
|fn|wdµ ≤ β

∫
X
Sn(f, 2)Mnwdµ ≤ β

∫
X
S(f, 2)Mwdµ. Taking the

supremum over all n ≥ 0 �nishes the proof. �

Now we are ready for the proof of the weighted inequality for q-functions.

Proof of (1.5). For any 1 < q ≤ 2 we have the pointwise estimate S(f, 2) ≤ S(f, q) and
hence the previous theorem gives

‖f‖L1(w) ≤ β‖S(f, q)‖L1(Mw) ≤ β[w]A1‖S(f, q)‖L1(w).

Consequently, by Theorem 2.3, we obtain that for any p > 1 we have

‖f‖Lp(w) ≤ C[w]Ap
‖S(f, q)‖Lp(w).

This is the desired claim. �

3.2. Sharpness. We will actually prove a stronger statement: for any 1 < p < ∞ and
any c > 2 there is a dimension d and a dyadic A1 weight w on Rd satisfying

(3.7) [w]A1
= c and ‖f‖Lp(w) >

1

3
[w]A1

‖S(f, q)‖Lp(w).

We start with a certain inductive procedure, which leads to a certain class of dyadic
cubes contained in [0, 1)d. The algorithm is as follows: �rst, we set J0 = {[0, 1)d}. Next,
if Jn has been de�ned, then each element Q of Jn is split into 2d children and one of
the children, denoted by C(Q), is distinguished. We let In =

⋃
Q∈Jn

C(Q) and call

C(Q) the atoms of In; the remaining (unselected) children of elements of Jn are put into
Jn+1. Directly from this fractal-type construction, we see that the sets I0, I1, I2, . . .
are pairwise disjoint and |In| = (1− 2−d)n2−d; hence, in particular, the union of all In's
covers almost the whole [0, 1)d.

Next, we de�ne the weight w : [0, 1)d → [0,∞) by

w =

∞∑
n=0

(
c2d − 1

c2d − c

)n
χIn .

Then w belongs to the class A1 and [w]A1 = c. To see this, pick an arbitrary dyadic
cube Q contained in [0, 1)d and let n be the smallest integer such that Q∩ In 6= ∅. Then
w ≥

(
c2d−1
c2d−c

)n
on Q, with equality on Q ∩ In. Now, if Q is contained in In, then w is

constant on Q and hence 〈w〉Q = w there. Otherwise, we compute that

〈w〉Q =
1

|Q|

∞∑
k=n

(
c2d − 1

c2d − c

)k
|Q∩Ik| =

∞∑
k=n

(
c2d − 1

c2d − c

)k
·(1−2−d)k−n2−d = c

(
c2d − 1

c2d − c

)n
,
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so 〈w〉Q ≤ cw on Q and equality holds on Q ∩ In. This proves that [w]A1
= c.

Next, pick a parameter r > p and de�ne the function

f =

∞∑
n=0

(
1 +

1

rc(2d − 1)

)n
χIn .

Then we have

‖f‖pLp(w) =

∞∑
n=0

(
1 +

1

rc(2d − 1)

)pn(
c2d − 1

c2d − c

)n
· (1− 2−d)n2−d.

The ratio of the above geometric series is equal to(
1 +

1

rc(2d − 1)

)p(
1 +

c− 1

c(2d − 1)

)
(1− 2−d) = 1 +

p− r
rc(2d − 1)

+ o(2−d)

as d→∞. There are two important consequences: �rst, since r > p, we have f ∈ Lp(w)
for large dimensions. Second, no matter how large the parameter d is, if we chose r close
to p, then the ratio is close to 1 and we can make ‖f‖Lp(w) arbitrarily large.

To study the properties of the q-function, pick an arbitrary dyadic subcube R of [0, 1)d

and let n be the smallest integer such that R ∩ In 6= ∅. Arguing as above, we check that

〈f〉R =


(

1 +
1

rc(2d − 1)

)n
if R ⊆ In,(

1 +
1

rc(2d − 1)

)n
· rc

rc− 1
otherwise.

Consequently, if we have an atom Q of In and [0, 1)d = Q0 ⊃ Q1 ⊃ Q2 ⊃ . . . ⊃ Qn ⊃ Q
is the sequence of dyadic cubes decreasing to Q, then ∆Q0f = rc

rc−1 ,

∆Qj
f = 〈f〉Qj

− 〈f〉Qj−1
=

1

(rc− 1)(2d − 1)

(
1 +

1

rc(2d − 1)

)j−1
j = 1, 2, . . . , n,

and

∆Qf = 〈f〉Q − 〈f〉Qn = − 1

rc− 1

(
1 +

1

rc(2d − 1)

)n
.

Since f is constant on Q, all the remaining di�erences vanish on this set. These identities
imply that on Q, we have the following inequality (for brevity, we set δ = (rc(2d− 1))−1)

S(f, q)q =

n∑
j=0

|∆Qj
f |q + |∆Qf |q

=

(
rc

rc− 1

)q
+

n∑
j=1

(
rc

rc− 1

)q
(1 + δ)

(j−1)q
δq +

(1 + δ)nq

(rc− 1)q

≤
(

rc

rc− 1

)q
+

(
rc

rc− 1

)q
· (1 + δ)nqδq

(1 + δ)q − 1
+

(1 + δ)nq

(rc− 1)q

≤
(

rc

rc− 1

)q
+

(
rc

rc− 1

)q
· (1 + δ)nqδq−1 +

(1 + δ)nq

(rc− 1)q
.

Therefore, we have the pointwise estimate

S(f, q) ≤ rc

rc− 1
+

(
rc

rc− 1
δ(q−1)/q +

1

rc− 1

)
f
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and hence

‖S(f, q)‖Lp(w)

‖f‖Lp(w)
≤

rc
rc−1‖w‖

1/p
L1 +

(
rc
rc−1δ

(q−1)/q + 1
rc−1

)
‖f‖Lp(w)

‖f‖Lp(w)

=
rc1+1/p

(rc− 1)‖f‖Lp(w)
+

rc

rc− 1
δ(q−1)/q +

1

rc− 1
.

Now we need to perform a limiting procedure. Let us keep c > 2 �xed, then pick r
su�ciently close to p and �nally let d be a large number (so that δ is close to zero). If
this is done appropriately, then the norm ‖f‖Lp(w) can be made as large as we wish, in

particular, we can make the �rst term rc1+1/p/
(
(rc − 1)‖f‖Lp(w)

)
smaller than 1/c. In

addition, the sum of the remaining two terms can be made smaller than 2/c. Putting all
these facts together, we see that we have constructed a pair f , w for which (3.7) is satis�ed.
This is precisely the desired claim in the probabilistic context of (1.5). Concerning (1.3),
we extend f and w to the whole Rd by setting f ≡ 0 and w ≡ 〈w〉(0,1]d outside (0, 1]d.
Then, arguing as in the proof of (1.2), one checks that w is still an A1 weight and the
characteristic is preserved. When studying the q-function, a little more e�ort is needed
since we are interested in the upper bound for ‖S(f, q)‖Lp(w). However, it is not di�cult
to see that the surplus in ‖S(f, q)‖Lp(w) can be bounded from above by a quantity that
does not depend on r or d. This shows that the above argument extends with no changes
and yields the optimality of the exponent.
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